Rabu, 28 Maret 2012

EXERCISE MATH ABOUT CUBE AND CUBOID


1. a. Fine the surface area:                                   E                               K
 (lw + lh + hw)
C
2 (9.2 + 9.8 + 8.12                                        8 cm       A                              M
2 (108 + 72 + 96)                                              N
2 (276) = 552 cm2                                                         12 cm
b. Find the volume:                                                       D           9 cm        H
l x w x h
12 . 9 . 8 = 864 cm2
c. Find the length of space diagonal:
NH =                                                   E                                  K
= 15 cm                                                                        A                            M
C
EH  =
=                                                 N                    
= 17 cm                                                                      D                                  H
d. Find AC:
AC =
            =
            = 17 cm
e. The length of AK
AK =
            =
            = 15 cm
f. Area of diagonal plane NHME
NHME = NH x HM
= 15 x 8
= 120 cm2
g. Area DCKA
DCKA  = AD x DC
= 8 x 15
= 120 cm2
h. Diagonal of diagonal plane DCKA
Diagonal DCKA =
 =
 = 17 cm
i. Diagonal of diagonal plane DHKE=
KH =
=
=
DK =
=
= 17 cm
j. Diagonal of diagonal plane AHCE
CA = gggfffg
=
= 17 cm
k. Yes, is it.
2. Surface area of a cube 54 cm2
6 (s2)  = 54
s2       = 9
s        = 3
- Volume =
s . s . s = 3 . 3 . 3
= 27 cm3         
- Space diagonal
=
=
=
= 3  cm
- Face diagonal
=
=
= 3  cm
- Area of diagonal plane
= Face diagonal x s
= 3  cm x 3
= 12.73 cm2
3. Cuboid dimensions = 2 cm x 3 cm x 4 cm
- Surface area
= 2 (lw + lh + hw)
= 2 (4.3 + 4.2 + 2.3)
= 2 (12 + 8 + 6)
= 2 (26)
= 52 cm2
- Cuboid volume
= l . w . h
= 4 . 3 . 2
= 24 cm3
4. The length of wire
= 4 (l . w . h)
= 4 (6 + 3 + 4)
= 4 (13)
= 52 cm
5. The length of wire is 4 m will be made frames of cube of dimensions 5 cm . 2 cm . 7 cm
a. Determine the number of frames that can be made
   frames remains  frames
b. Determine the length of wire remains
 x the length of frames
 x } =  x 56
= 8 cm